INDIAN SCHOOL MUSCAT

CHEMISTRY DEPARTMENT

QUESTION BANK

Halo alkanes and Halo arenes

4	T (*
1	Define
1	Dellie

- (i) Chiral carbon
- (ii) Chiral molecule
- (iii) Enantiomer
- (iv) Racemic mixture
- 2 Explain the following with suitable example
 - (i) Racemisation
 - (ii) Inversion of configuration
 - (iii) Retention of configuration

3 Give reasons:

- (i) Thionyl chloride is best reagent for converting alcohols to haloalkanes.
- (ii) Alkyl halides have higher boiling points than corresponding hydrocarbons
- (iii) Benzylic and allylic halides follow S_N1 mechanism.
- (iv) H₃PO₄ is used with KI for iodination of alcohols.
- (v) Halogens are deactivating but 'o, p' directive.
- (vi) Presence of electron withdrawing groups on benzene ring increases tendency of S_N reaction.

4	Write 6	equation to illustrate	
	(i)	Sandmeyer reaction	
	(ii)	Finkelstein reaction	
	(iii)	Swart's reaction	
	(iv)	Wurtz reaction.	
5	Explain	Explain with suitable example the following mechanism	
	(i) S _N 1		
	(ii) S _N 2	ii) $S_N 2$ iii) SN in aryl halides	
	(iii) SN		
6	What h	opens when:	
	(i)	Chlorobenzene is treated with Mg in ether and then reacted with water	
	(ii)	Cylcohexene is treated with Br ₂ /uv light	
	(iii)	Ethylbromide is treated with excess ammonia	
	(iv)	Isopropylbromide is treated with sodium ethoxide	
	(v)	Methyl bromide is treated with metallic sodium in ether	
7	Bring a	ing about the following conversions:	
	(i)	2-methyl propene to 2-chloro-2-methylpropane	
	(ii)	benzene to 4-bromo nitrobenzene	
	(iii)	benzylalcohol to 2-phenylethanoic acid	
	(iv)	ethanol to butane	
	(v)	propene to 1-propanol	
	(vi)	1-bromopropane to 2-bromopropane	
	(vii)	2-bromopropane to 1-bromopropane	

- (viii) Benzene to biphenyl
- (ix) Methylbromide to acetic acid
- (x) Tert- butylbromide to isobutylbromide
- 8 Give a test to distinguish
 - (i) Ethyl chloride and phenyl chloride
 - (ii) 1-Cholropropene and 3-chloropropene